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When a chiral isotropic elastomer is brought to the low-temperature cholesteric phase, the nematic degree of
freedom tends to order and form a helix. Due to the nematoelastic coupling, this also leads to elastic defor-
mation of the polymer network that is locally coaxial with the nematic order. However, the helical structure of
nematic order is incompatible with the energetically preferred elastic deformation. The system is therefore
frustrated and appropriate compromise has to be achieved between the nematic ordering and the elastic
deformation. For a strongly chiral elastomer whose pitch is much smaller than the system size, this problem has
been studied by Pelcovits and Meyer, as well as by Warner. In this work, we study the isotropic-cholesteric
transition in the weak-chirality limit, where the pitch is comparable to or much larger than system size. We
compare two possible solutions: a helical state as well as a double-twist state. We find that the double-twist
state very efficiently minimizes both the elastic free energy and the chiral nematic free energy. On the other
hand, the pitch of the helical state is strongly affected by the nematoelastic coupling. As a result, this state is
not efficient in minimizing the chiral nematic free energy.
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I. INTRODUCTION

An isotropic chiral elastomer can be synthesized by cross-
linking a chiral nematic polymer melt in the isotropic phase.
When such a system is brought into the low-temperature
cholesteric phase,1 the nematic degree of freedom orders lo-
cally and tends to form a helical structure. Due to the nema-
toelastic coupling, the polymer network tends to stretch
along the direction of the local nematic order, which continu-
ously rotates along the helical axis. For a system with cylin-
drical shape, this leads to strain deformation which increases
linearly with the cylinder radius, as illustrated in Fig. 2�b�
below. Its elastic energy cost is formidably high, when the
cylinder radius is much larger than the helical pitch. This
frustration due to competition between network elasticity and
liquid crystalline ordering makes it nontrivial to find the
ground state of the system in the cholesteric phase.

This problem was first studied by Pelcovits and Meyer �1�
using linear elasticity theory. In the limit of infinitely strong
chirality, it is clear that the system should first satisfy the
chirality by forming a planar helix along the cylinder axis.
On the other hand, to avoid large strain energy, the solid can
only deform uniaxially, which implies that the nematoelastic
coupling can only be partially satisfied. Such a state, as il-
lustrated in Figs. 2�a� and 2�c�, is called a planar helix state
in Ref. �1� and a transverse cholesteric state in Ref. �2�. As
the chirality is tuned to be weaker, a conical helix state,
where the processing director has nonvanishing component
along the helical axis, may constitute a better solution. The
associated solid deformation as well as director pattern for
this conic state are illustrated in Figs. 2�d� and 2�e�, respec-
tively. Warner �2� carried out a nonlinear analysis of the
same problem using neoclassical elasticity theory �3,4�. Non-
trivial dependence of the phase boundary on the magnitude

of the nematic order was identified. The multicritical point
associated with the planar-conic transition �where the first-
and second-order transition lines meet� was also analyzed.

It is implicitly assumed in both Ref. �1� and Ref. �2� that
the pitch of the corresponding nematic liquid crystal system
�typically �0.1 �m� is much smaller than the system size,
e.g., the radius of the cylinder. That is, the elastomer is in the
strong-chirality limit. This is certainly correct for many
cases. Nevertheless, the cholesteric pitch can be continuously
tuned by changing the concentration of chiral chemical
groups during polymerization. In particular, it can be tuned
to be comparable to macroscopic length scales, e.g., the sys-
tem size. This is especially true if the system has the shape of
a thin cylinder or wire. It is therefore interesting and relevant
to study the isotropic-cholesteric transition in the weak-
chirality limit. In this work, we carry out a nonlinear elastic-
ity analysis of this problem using variational methods. We
find that in this regime a double-twist state has lower free
energy than the usual helix director pattern. The results ob-
tained by Pelcovits and Meyer �1� and Warner �2�, as well as
the authors in this work are summarized by the “phase dia-
gram” of a chiral nematic cylinder in Fig. 1.

1Certain precautions have to be taken in order that the system does
not end up with a polydomain state where there is only short-range
chiral nematic order.
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FIG. 1. �Color online� Phase diagram of a chiral cylinder in the
nematic phase. The parameters a0, q0, and R are defined in Sec. II.
The transition between the planar and conical helix states may be
continuous or discontinuous, while the transition between the coni-
cal helix and double-twist states is expected to be discontinuous.
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II. MODEL

The total free energy per unit volume of a chiral liquid
crystalline elastomer cross linked in the isotropic phase is
given by

f = fel + fQ, �1�

where fel is the neoclassical elastic free energy

fel =
1

2
�Tr�Tl−1� −

3

2
� , �2�

with

�ia =
�ri

�xa
�3�

the deformation gradient matrix defined relative to the iso-
tropic reference state r�=x�, which is subject to the incom-
pressibility constraint

det � � 1.

The vector x� hence coincides with the position of the mass
point in the isotropic reference state and is usually referred to
as the Lagrangian coordinate. The vector r�, on the other
hand, describes the position of the mass point in the chiral
nematic reference state �the ground state that minimizes the
total free energy�, and is usually referred to as the Eulerian
coordinate. As a general property of nonlinear elasticity
theory, it is essentially important to distinguish these two
coordinates properly. The symmetric and positive definite
tensor l in the neoclassical elastic free energy Eq. �2� is
called the step length tensor �3,4� of the current state, or
deformed state,2 and describes the statistical conformation of
polymer chains in the current state. It is related to the nem-
atic order parameter Q by

l = aI − bQ , �4�

where a and b are some microscopic constants. In this work
we shall always normalize l such that it has determinant 1.
This is always possible as long as the magnitude of nematic
order is saturated, as it always is deep in the nematic phase.
In the principal coordinate system of the nematic order pa-
rameter, the step length tensor l can be represented as a ma-
trix:

l = �1/� 0 0

0 1/� 0

0 0 �2� = ��2 − �−1�n̂n̂ + �−1I , �5�

where � is a monotonically increasing function of the mag-
nitude of the nematic order S, whose detailed functional form
is irrelevant to our study. For an achiral nematic elastomer, �
turns out to be the ratio of spontaneous stretch along the
direction of the nematic director when the system enters the

nematic phase from the isotropic phase �3,4�. Due to the
incompressibility constraint, the system shrinks by a factor
of 1 /�� in the perpendicular directions. Finally, we note that
in Eq. �2� a constant term −3� /2 is introduced so that the
elastic free energy vanishes in the isotropic reference state
where �= l=I.

The second part fQ in Eq. �1� is the Landau–de Gennes
free energy for a chiral nematic liquid crystal. Assuming that
the nematic order is well saturated with fixed magnitude S in
the cholesteric state, the relevant nematic free energy is the
Frank free energy for chiral nematic liquid crystals �5,6�:

fFrank =
1

2
K1��� · n̂�2 +

1

2
K2�n̂ · �� � n̂ − q0�2

+
1

2
K3�n̂ � �� � n̂�2 + K24�� · �n̂ · �� n̂ − n̂�� · n̂� ,

�6�

where K1, K2, and K3, are the splay, twist, and bending con-
stants, respectively, while q0

−1=�0 is the cholesteric pitch for
the corresponding chiral nematic liquid crystal. K24 is the
saddle splay constant, which plays an important role in the
physics of the blue phase �5,7,8�. Since the saddle splay den-
sity is a complete differential, its volume integral can be
transformed into a surface integral by Gauss’ theorem, and
therefore scales in the same way as the surface anchoring of
the nematic director field, which we shall not consider in this
work. Nevertheless, it is rather straightforward to include
this surface interaction. Here it is important to note that all

the derivatives in Eq. �6�, �� i=� /�ri, etc., are with respect to
the Eulerian coordinates, i.e., Cartesian coordinates of mass
points in their deformed states. This is required by the liquid
nature of the Frank free energy: at length scales where the
Frank free energy becomes important, the system is essen-
tially a liquid. The physical quantities of a liquid should be
naturally expressed in terms of Eulerian rather than Lagrang-
ian coordinates. To avoid confusion in notation, we shall use

�� i=� /�ri for the derivative with respect to Eulerian coordi-
nates and �a=� /�xa to denote the partial derivative with re-
spect to the Lagrangian coordinates.

Let us first have a qualitative discussion of the total free
energy Eq. �1�. Within the one-constant approximation of the
Frank free energy, and ignoring the surface saddle splay term
for a moment, there are three natural length scales in this
problem. q0

−1=�0 is the chirality pitch, while a0=�K /� is the
nematic penetration length, i.e., the crossover length scale set
by the competition between network elasticity and nematic
director elasticity. The third length scale is the radius R of the
cylinder. For most liquid crystalline elastomers, we estimate
K	�2–4��10−12 N, while �	104–106 Pa. Therefore a0
	1–10 nm, constituting the shortest length scale in our
problem. On the other hand, the chirality pitch �0 can vary a
lot; it is typically 0.1 �m or smaller for strongly chiral ma-
terials but may get much larger for weakly chiral materials.
In particular, it can even be larger than the cylinder radius R.
The regime a0 /R�1 is clearly experimentally inaccessible.

Comparing these three length scales, we naturally are led
to the following two distinct regimes: �1� the weak-chirality

2Strictly speaking, there is also a step length tensor l0 in the ref-
erence preparation state, which appears in the neoclassical free en-
ergy, in front of �T. However, since the reference state is isotropic,
l0 is proportional to the identity tensor and therefore can be elimi-
nated by redefinition of l.
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regime a0�R��0; and �2� the strong-chirality regime
a0 ,�0�R. The strong-chirality limit has already been ana-
lyzed by Pelcovits and Meyer �1�, as well as by Warner �2�.
It is found that, as one tunes the dimensionless ratio a0 /�0
=a0q0 to below a critical value of the order of unity, the
system goes from a planar helix director pattern to a conical
helix pattern. In this work, we shall mainly focus on the
weak-chirality limit. Similar to Refs. �1,2�, we shall use
variational methods, proposing two kinds of candidate states
with certain variational parameters and minimizing the total
free energy over these parameters.

III. DOUBLE TWIST OF NEMATIC DIRECTOR
AND TWIST OF CYLINDER

Consider a cylindrical block of isotropic chiral elastomer
of radius R, aligning along the z axis, as illustrated in Fig.
2�a�. We need to find the nematic director field n̂�x�� as well
as the elastic deformation r��x�� relative to the isotropic refer-
ence state that minimizes the total free energy. One possible
low-energy configuration for the chiral Frank free energy is a
double-twist texture,3 as illustrated in Fig. 2�g�. In chiral
nematic liquid crystals, the double-twist configuration is en-
ergetically favorable if the saddle splay modulus K24 is posi-
tive and large enough �5,7,8�. According to the current un-
derstanding of the blue phase, these double-twist cylinders
pack into a three-dimensional periodic structure with cubic
symmetry. In liquid crystalline elastomers, due to the nema-

toelastic coupling, a double-twist nematic director texture
necessarily induces a twist of the cylinder, together with a
uniaxial stretch � along the cylinder axis:

r��x�� = �1/�� 0 0

0 1/�� 0

0 0 �
�Oz�	z� · x� , �7�

where

Oz�	z� = �cos 	z − sin 	z 0

sin 	z cos 	z 0

0 0 1
� �8�

is a z-dependent rotation about the z axis, i.e., a uniform
twist. This deformation of the solid is illustrated in Fig. 2�f�.
Using the cylindrical coordinate system, the Lagrangian co-
ordinates of a point x� are given by the triplet �
 ,� ,z�:

x� = �
 cos �


 sin �

z
� . �9�

In the deformed state Eq. �7�, the Eulerian coordinates r��x��
are given by the triplet �r ,� ,rz�, where

r��x�� = �r cos �

r sin �

rz
� =�




��
cos�� + 	z�




��
sin�� + 	z�

�z
� , �10�

where we have used Eqs. �7� and �9�. Therefore we find

�r,�,rz� = 
 


��
,� + 	z,�z� . �11�

Note that the deformed cylinder has height L� and radius
R /��.

Let ê� be the unit vector associated with the Eulerian
cylindrical coordinate �:

ê� = � �r�

��
�−1 �r�

��
= �− sin �

cos �

0
� . �12�

In terms of the Eulerian coordinates, a double-twist texture
of the nematic director is represented as

n̂�r�� = êz cos 
�r� + ê� sin 
�r� . �13�

Note that the twist angle 
�r�=
�
 /��� can be equally well
represented as a function of the Lagrangian coordinate 
.

�r� satisfies the boundary condition 
�0�=0, since the nem-
atic director is parallel to ẑ on the center axis of the cylinder.
On the outer surface of the cylinder r=R /��, 
�R /��� is free
to vary.

Calculation of the deformation gradient using Eq. �7� is a
trivial and tedious matter. On the other hand, by substituting
Eq. �13� into Eq. �5� we can calculate the step length tensor
l. Substituting these results into Eq. �2�, we find that the

3It is called a double twist, because starting from the center, the
nematic director is twisted along each of two directions perpendicu-
lar to the cylinder axis. This should be contrasted with the usual
cholesteric state, where the nematic director is twisted only along
one direction.

FIG. 2. �Color online� Elastic deformation and director pattern
for various states. The grid lines in �a�, �b�, �d�, and �f� are associ-
ated with the Lagrangian coordinate system and therefore charac-
terize elastic deformations relative to the reference state �a�. �a�
Reference cylinder in the isotropic phase. �b� Elastic deformation of
the planar helix state at the weak-chirality limit, studied in Sec. IV.
�c� Nematic director pattern of the planar helix state. Note that the
pitches in �c� and �d� are not in the same scale. This is only an
artifact. �d� Elastic deformation of the conical helix state, studied in
Refs. �1,2�. The pitch is exaggerated to make it clear. The real pitch
should be much smaller than the cylinder radius. �e� Director pat-
tern of the conical helix state; 
 is the conical angle. �f� Elastic
deformation of the double-twist state. �g� Director pattern of the
double-twist state. The lines show the local direction of the nematic
director.
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spatially dependent elastic free energy density for the pro-
posed double-twist solution is given by

fel =
�

4�2�
�1 + �3�3 + 	2
2�3 + 3�3 + �3 + 	2
2

− ��3 − 1���3 − 	2
2 − 1�cos�2
�

− 2	��3 − 1��3/2
 sin�2
�� . �14�

The spatially dependent Frank free energy density can be
calculated by substituting Eq. �13� into Eq. �6�, carefully
noting that all derivatives are with respect to the Eulerian
coordinates r�. The result is

fFrank =
1

2
K2
 1

2r
sin 2
 +

d


dr
− q0�2

+
1

2
K3

sin4 


r2 − K24
sin 2


r

d


dr
, �15�

which is identical to that for a chiral nematic liquid crystal in
a double-twist cylinder �6�.

In the weak-chirality limit, q0R�1, we expect 
�r� to be
small and linear in r. We can therefore expand the elastic free
energy density in terms of 
 and 
�r�:4

fel = f0 + f2 + �higher-order terms� , �16�

where

f0 =
��2

2�2 +
��

�
−

3

2
� , �17�

f2 =
�

2�2�
�	2
2�3 + ��3 − 1�
2��3 − 1� − 2	��3 − 1�
�3/2
�

�18�

are terms of order of r0 and r2, respectively. We shall ignore
all higher-order terms in the elastic free energy. Note that f0
is exactly the free energy density for a monodomain nematic
elastomer, with anisotropy ratio �, undergoing a uniaxial de-
formation coaxial with the step length tensor. Minimizing f0
over �, we obtain

� = � → f0 = 0, �19�

as expected. Substituting this into Eq. �18�, we find

f2 →
�

2�3 ���3 − 1�
 − 	�3/2
�2, �20�

which is a complete square. Since fFrank is independent of 	,
and since 
 is linear in 
 as will be shown below, Eq. �20� is
minimized by

	 = �−3/2��3 − 1�





, �21�

f2 = 0. �22�

Hence, there is no elastic free energy cost for the double-

twist state up to the order of �	R�2. As we shall show below,
the parameter 	 is of the order of q0. Hence �	R�2 is indeed
a small parameter in the weak-chirality limit.

Similarly, we also expand the Frank free energy in terms
of 
 and r. To the leading order we find

fFrank =
1

2
K2



r
+

d


dr
− q0�2

− K24
2


r

d


dr
, �23�

which depends only on 
. Note that the bending term is of
higher order when compared to all other terms that we have
kept.

We have to minimize the total Frank free energy density

FFrank = 2�L�

0

R/��

fFrankr dr �24�

over 
�r� in order to determine the optimal director texture.
Let us define R�=R /�� in order to streamline the notations
below. Calculating the first variation of the Frank free en-
ergy, including the boundary terms at r=R�, we find

�FFrank

2�L�
= K2


0

R�

dr
− r
��r� − 
��r� +

�r�

r
��
�r�

+ �K2�
�R�� + R�
��R�� − R�q0�

− 2K24
�R����
�R�� . �25�

Since the twist angle 
�r� is free to vary on the boundary r
=R�, we have to set both the integrand and the boundary
term to zero in order to find the minimizing solution. This
leads to the following two Euler-Lagrange equations:

r
��r� + 
��r� +

�r�

r
= 0, �26�

�
�R�� + R�
��R�� − R�q0� − 2�
�R�� = 0, �27�

where �=K24 /K2 is a dimensionless ratio. Solving these two
equations, we find


�r� =
q0

2�1 − ��
r =

q0


2�1 − ����
, �28�

which explicitly shows that 
�r� is indeed linear in r. The
twist angle on the boundary is given by


�R�� =
q0R

2�1 − ����
,

which serves as a small parameter that controls the validity
of the perturbative analysis. Substituting Eq. �28� into Eq.
�21�, we find the parameter 	 given by

	 =
��3 − 1�q0

2�1 − ���2 , �29�

which is indeed a constant, of the same order as q0, and
independent of r. Substituting Eq. �28� into Eq. �23�, we find
the Frank free energy density, which is also the total free
energy density �since the elastic free energy vanishes at the
order of �	R�2�, given by4Remembering that 
=��r is proportional to r.
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f tot = fFrank = −
K2�q0

2

2�1 − ��
. �30�

Summarizing Eqs. �28�–�30�, we find that, if ��1, our
perturbative calculation is quantitatively good in the weak-
chirality regime where q0R /2�1−�����1. The double-twist
state is very efficient in minimizing both the elastic free en-
ergy and the Frank free energy. In particular, when the saddle
splay constant K24 vanishes, �=0, and therefore the total free
energy Eq. �30� also vanishes. Note that the total free energy
is positive definite if �=0. Hence, the double-twist state is
clearly the ground state, at least up to the order of �q0R�2. By
contrast, for a cholesteric liquid crystal with K24=0, the blue
phase is clearly not the lowest-energy state, compared to the
usual helical state. This shows that, unlike for the blue phase
of cholesteric liquid crystal, the saddle splay constant K24
does not play an important role in the formation of the
double-twist pattern in cholesteric elastomers. When
q0R /2�1−���� is comparable to or larger than unity, the
higher-order terms of the elastic free energy and the Frank
free energy cannot be neglected, and one has to minimize the
full free energy Eqs. �14� and �15�. Finally, if ��1, a per-
turbative calculation in powers of 	R is qualitatively incor-
rect, no matter how small the parameter q0R. We must mini-
mize the full elastic free energy Eqs. �14� and �15�.

IV. HELICAL STATE

In the weak-chirality regime that we are interested in,
q0a0�q0R�1, the elastic energy scale �per unit volume� �
is much larger than the chiral Frank energy scale Kq0

2. There-
fore, the conical helix state studied in Refs. �1,2� can never
be the ground state, as it only partially minimizes both the
Frank free energy and the elastic free energy. There is, how-
ever, another potential candidate for the ground state, which
can minimize the elastic free energy up to the leading order.
Let us consider a planar helix director pattern along the cyl-
inder axis, where the nematic director remains perpendicular
to the cylinder z axis and rotates around this axis with pitch
	:5

n̂�z� = êx cos 	z + êy sin 	z = Oz�	z�êx. �31�

In this work, we shall use both dyadic notation and matrix
notation for tensor quantities. The corresponding local step
length tensor is given by

l�z� = Oz�	z�l�z = 0�Oz�− 	z� , �32�

where

l�z = 0� = ��2 0 0

0 1/� 0

0 0 1/�
� �33�

is the step length tensor at the plane z=0. This variational
form of the nematic director field is the same as the planar
helix state considered in Ref. �1�.

Due to the nematoelastic coupling, the polymer network
prefers to stretch along the local nematic director. This, how-
ever, implies that the direction of local strain deformation
rotates � /2 between two cross sections �0 /4 apart along the
cylinder, which leads to additional strain energy density
��	r�2 that explicitly depends on the radius r. For a fat cyl-
inder �or in the strong-chirality limit�, 	R�1 and this strain
energy is prohibitively high. Indeed it is shown by Pelcovits
and Meyer �1�, as well as by Warner �2�, that the system
prefers a uniform uniaxial deformation along the cylinder
axis in this regime. For a thin cylinder �or in the weak-
chirality limit�, however, 	R�1 and this additional strain
energy constitutes only a perturbation to the strain energy of
the corresponding uniform deformation. Nevertheless, to re-
duce the additional strain energy at the order of ��	R�2, the
system can globally twist in the direction opposite to the
nematic helix. The overall nonuniform deformation, shown
in Fig. 2�b�, is represented by the Eulerian coordinates as
functions of the Lagrangian coordinates:

r��x�� � �̃�z� · x�

= Oz�	z��� 0 0

0 1/�� 0

0 0 1/��
�Oz�− �	 + ��z� · x� ,

�34�

where � measures the global twist of the solid. We note that
also, due to the additional inhomogeneous strain deforma-
tion, the inverse pitch of the director helix 	 is generically
different from the inverse pitch p0 of the corresponding liq-
uid crystal system. This will be made clear in the calculation
below.

It is important to note that the matrix �̃ defined through
Eq. �34� explicitly depends on the coordinate z and is not the
deformation gradient �ia. The latter should be obtained by
taking the partial derivative of Eq. �34� with respect to the
Lagrangian coordinates x ,y ,z. Being derived in this way, the
deformation gradient matrix naturally satisfies the following
compatibility conditions:

�a�ib = �b�ia.

Substituting the deformation gradient and nematic order
parameter Eq. �31� into Eq. �2�, integrating over the refer-
ence volume of the cylinder, and dividing it by the total
volume �R2L, we obtain the elastic free energy density for
the proposed deformation gradient as

fel�	,�,�� = f0 + f2, �35�

f0 = �
 �

�
+

�2

2�2� −
3

2
� , �36�

5We note that 	 is the helical pitch measure by the Lagrangian
coordinate x�. The physical value of the pitch, however, should be
defined using the Eulerian coordinate and is therefore given by 	��.

ISOTROPIC-CHOLESTERIC TRANSITION OF A WEAKLY … PHYSICAL REVIEW E 78, 021709 �2008�

021709-5



f2 =
�R2

8�2�
���3 + �3��2 − 2��3 − �3/2���3/2 − 1�	�

+ 	2��3 + 1���3/2 − 1�2� . �37�

Note that f0 is independent of the cylinder radius R and is
identical to the free energy of an achiral nematic elastomer
undergoing uniaxial and homogeneous deformation. By con-
trast, f2 is proportional to R2 and quadratic in 	 and �. f2 is
clearly due to the inhomogeneous deformation. The ratio be-
tween f0 and f2 scales as �	R�2 as discussed earlier. The
dimensionless ratio 	R characterizes the importance of
chirality in this problem. In Refs. �1,2� this ratio is implicitly
taken to be large at the very beginning. In this work, we shall
assume it to be a small number. More precisely, we shall
assume another dimensionless ratio q0R�1. Also, we shall
see below that for this proposed variational solution, the
Frank free energy scales in the same way as f2; hence, it is
reasonable to minimize f0 first and then the sum of f2 and
fFrank. Minimization of f0 leads to

� = � , �38�

f0 → 0. �39�

That is, the local elastic deformation is identical to that of a
homogeneous achiral nematic elastomer. Inclusion of f2 and
fFrank induces a small change of � at the order of 	R.

The Frank free energy density for the proposed director
pattern Eq. �31� can also be easily calculated. Again we have
to be careful with the derivatives in Eq. �6� with respect to
the Eulerian coordinate r�. After some tedious calculation and
replacing � with �, we find

fFrank =
1

2
K2	2� − K2	q0

�� +
1

2
K2q0

2, �40�

which is independent of the elastic constants K1, K3, and K24.
We still need to minimize the sum of f2, given in Eq. �35�

and fFrank, Eq. �40�, over the remaining two variational pa-
rameters 	, �. Since fFrank does not depend on �, we mini-
mize f2 over � and find

� =
	��3/2 − 1�2

2�3/2 , �41�

f2 =
R2	2��3 − 1�2�

16�3 . �42�

We note that, as long as ��1 and 	�0, the global sponta-
neous twist of solid � does not vanish. More importantly,
unlike the double-twist state, the planar helix state consid-
ered here does cost elastic free energy at the order of �	R�2.

We can now minimize the sum of Eqs. �42� and �40� over
	, which leads to

	 =
8a0

2q0�7/2

8a0
2�4 + R2��3 − 1�2 . �43�

Remembering that a0 /R�10−6 even for R=1 mm, and �
�1, the first term in the denominator can be safely ignored
and 	 can be approximated as

	 =
8a0

2q0�7/2

R2��3 − 1�2 	 
a0

R
�2

q0 � q0. �44�

This result indicates that the helix of the nematic director is
strongly resisted by the nematoelastic coupling energy and
the pitch becomes much longer than the corresponding value
�0 in the nematic liquid crystal. Substituting Eq. �44� into
Eqs. �42� and �40�, we find

f tot � −
a0

2

R2

4K2q0
2�4

��3 − 1�2 +
1

2
K2q0

2 �
1

2
K2q0

2. �45�

The total free energy is therefore positive, in strong contrast
with the double-twist state we considered in the preceding
section. The planar helix state considered here is therefore
not efficient in energy minimization. This is clearly due to
the extra elastic free energy cost Eq. �42� caused by the
nematoelastic coupling.

V. DISCUSSION AND CONCLUSION

We have shown in this work that, in the weak-chirality
limit q0a0�q0R�1, the double-twist state minimizes both
the Frank free energy and the elastic free energy up to the
order of �q0R�2, and is therefore a good candidate for the real
ground state. The planar helix state, on the other hand, is
strongly influenced by the nematoelastic coupling, with the
pitch much longer than the corresponding value in a choles-
teric liquid crystal. As the dimensionless parameter q0R be-
comes larger than 1, the elastic energy cost due to inhomo-
geneous strain, scaling as ��q0R�2, dominates all other terms.
When q0R�1 and q0a0�1, the ground state is likely to be
the conical helix state with 
�� /2, according to the studies
in Refs. �1,2�. The conical state and the double-twist state are
qualitatively different, and cannot be mutually accessed in a
continuous fashion. Therefore the aforementioned two re-
gimes are likely separated by a first-order phase transition.
Study of this transition is technically challenging, mainly
because in the transition region, q0R	1, and neither the cur-
rent analysis nor the analyses in Refs. �1,2� are valid. There
is no small parameter that one can use to perform a pertur-
bative calculation. Numerical analysis of this transition is
feasible but is beyond the scope of this work.
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